欢迎来到OAJRC平台!
登录 | 注册 | English
期刊目次
加入编委
添加您的邮件地址以接收即将发行期刊数据:
Open Access Article
Advances in International Finance. 2021; 3: (1) ; 1-15 ; DOI: 10.12208/j.aif.20210001.
深圳技术大学商学院 广东深圳
易方达基金管理有限公司 广东广州
上海商学院财务金融学院 上海
*通讯作者: 高翔,单位:上海商学院财务金融学院 上海;
国家自然科学基金“操作风险动态量化方法研究:从微观机构到宏观系统”
发布时间: 2021-05-10 总浏览量: 2303
PDF 全文下载 引用本文 收录截图(CNKI-Scholar)
将广义自回归条件异方差模型 (generalized autoregressive conditional heteroskedasticity model, 简称GARCH) 与混频数据抽样模型 (mixed data sampling, 简称MIDAS) 相结合构建单因子、三因子GARCH-MIDAS模型来预测波动率并计算波动率信息比率,通过Logit模型和1996至2019年中国股票市场数据,验证了波动率信息比率指标与中国股票市场崩盘风险之间的关系。结果表明:中国股票市场日度波动率服从 GARCH(1,1) 过程且与宏观经济变量水平值及波动率显著相关,波动率信息因子与国内股票市场崩盘风险显著负相关且较为稳健,三因子GARCH-MIDAS模型拟合能力优于单因子模型,包含波动率信息因子的Logit模型能有效预测国内股市崩盘风险。
This paper utilizes the single-factor and three-factor GARCH-MIDAS model to predict Chinese market volatility and calculate the volatility information ratio, which purports to measure investor overconfidence and irrational behaviors. The ratio’s predictivity of market crash is investigated with a Logit specification with Chinese stock market index data from 1996-2019. The empirical results indicate that the daily volatility of Chinese stock market follows a GARCH(1,1) process driven by the level and fluctuation of macroeconomic indicators. There exists a significantly negative and robust relationship between our information ratio and market crash risk in China. Moreover, the three-factor GARCH-MIDAS model outperforms the single-factor one in forecasting the crash risk in China’s stock market when our proposed volatility information ratio is incorporated.
[1] 叶康涛,刘芳,李帆. 股指成份股调整与股价崩盘风险 基于一项准自然实验的证据.金融研究,2018 3 : 172-189.
[2] Pindyck, R S. Risk, Inflation, and the Stock Market.The American Economic Review,1983 74 (3) : 335-351.
[3] Romer, D H. Rational Asset Price Movements Without News.The American Economic Review,1992 83 (5) : 1112-1130.
[4] Grech, D, Zygmunt M. Can One Make Any Crash Prediction in Finance Using the Local Hurst Exponent Idea.Physica A-statistical Mechanics and Its Applications,2004 336 (1) : 133-145.
[5] Hong H, Stein J C. Differences of Opinion, Short-Sales Constraints and Market Crashes.Review of Financial Studies,2003 16 (2) : 487-525.
[6] Marin J M, Olivier J. The Dog That Did Not Bark: Insider Trading And Crashes.Journal of Finance,2008 63 (5) : 2429-2476.
[7] Hutton A P, Marcus A J, Tehranian H. Opaque Financial Reports, R2, and Crash Risk.Journal of Financial Economics,2009 94 (1) : 67-86.
[8] Callen J L, Fang X H. Institutional Investor Stability and Crash Risk: Monitoring Versus Short-Termism?.Journal of Banking and Finance,2013 37 (8) : 3047-3063.
[9] An H, Ting Z. Stock Price Synchronicity, Crash Risk, and Institutional Investors.Journal of Corporate Finance,2013 21 (1) : 1-15.
[10] 潘越,戴亦一,林超群. 信息不透明 分析师关注与个股暴跌风险.金融研究,2011 9 : 138-151.
[11] 张晓宇,徐龙炳. 限售股解禁 资本运作与股价崩盘风险.金融研究,2017 11 : 158-174.
[12] 赵汝为,熊熊,沈德华. 投资者情绪与股价崩盘风险 来自中国市场的经验证据.管理评论,2019 3 : 50-60.
[13] Engle R F, Ghysels E, Sohn B. Stock Market Volatility and Macroeconomic Fundamentals.The Review of Economics and Statistics,2013 95 (3) : 776-797.
[14] 郑挺国,尚玉皇. 基于宏观基本面的股市波动度量与预测.世界经济,2014 12 : 118–139.
[15] 夏婷,闻岳春. 经济不确定性是股市波动的因子吗 基于GARCH-MIDAS模型的分析.中国管理科学,2018 12 : 1-11.
[16] Asgharian H, Ai J H, Farrukh J. The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH-MIDAS Approach.Journal of Forecasting,2013 32 (7) : 600-612.
[17] Errunza V, Hogan K. Macroeconomic Determinants of European Stock Market Volatility.European Financial Management,1998 4 (3) : 361–377.
[18] Bomfim A N. Pre-announcement Effects, News Effects, and Volatility: Monetary Policy and the Stock Market.Journal of Banking & Finance,2003 27 (1) : 133–151.
[19] Engle R F, Rangel J G. The Spline-GARCH Model for Low Frequency Volatility and its Global Macroeconomic Causes.Review of Financial Studies,2008 21 (3) : 1187-1222.
[20] Mishkin F S. Is Monetary Policy Effective During Financial Crises.The American Economic Review,2009 99 (2) : 573-577.
[21] Fang L B, Yu H H, Wen X. Forecasting gold futures market volatility using macroeconomic variables in the United States.Economic Modelling,2018 72 : 249-259.
[22] Gregoriou A, Kontonikas A, MacDonald R, Montagnoli A. Monetary policy shocks and stock returns evidence from the British market.Financial Markets and Portfolio Management,2009 23 (4) : 401-410.
[23] 许均华,李启亚. 宏观政策对我国股市影响的实证研究.经济研究,2001 9 : 12-21+95.
[24] 陈守东,易晓溦,刘洋. 政策不确定下中国股市与宏观经济相关性的非对称效应研究.当代财经,2014 1 : 45-55.
[25] Ghysels E, Sinko A, Valkanov R I. MIDAS Regressions: Further Results and New Directions.Econometric Reviews,2007 26 (1) : 53-90.
[26] Engle R F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.Econometrica,1982 50 (4) : 987-1007.
[27] Bollerslev T. Generalized Autoregressive Conditional Heteroskedasticity.Journal of Econometrics,1986 31 (3) : 307-327.
[28] 董彩丽,陈强,郑旭. 基于混频模型的CPI短期预测研究.统计研究,2014 31 (12) : 25-31.
[29] Ghysels E, Santa Clara R, Valkanov R I. The MIDAS Touch Mixed Data Sampling Regression Models.CIRANO Working Papers,2004 2004 : 1-11.
[30] Campbell J Y. A Variance Decomposition for Stock Returns.The Economic Journal,1991 101 (405) : 157-179.
[31] Campbell J Y, Shiller R J. The Dividend Price Ratio and Expectations of Future Dividends and Discount Factors.Review of Financial Studies,1988 1 (3) : 195-228.
[32] Amihud Y. Illiquidity and Stock Returns: Cross-Section and Time-Series Effects.Journal of Financial Markets,2002 5 (1) : 31-56.
[33] 施东晖,孙培源. 基于CAPM的中国股市羊群行为研究 兼与宋军、吴冲锋先生商榷.经济研究,2002 2 : 64-70.
[34] Nelson D B. Conditional Heteroscedasticity in Asset Returns A New Approach.Econometrica,1991 59 : 347-370.
入驻平台
回到首页
扫一扫,添加我们