期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Advances in International Finance. 2025; 7: (3) ; 28-36 ; DOI: 10.12208/j.aif.20250035.

Research on central bank text information and its predictive power for financial markets
央行文本信息及其对金融市场的预测效果研究

作者: 段从强 *

济南大学 山东济南

*通讯作者: 段从强,单位:济南大学 山东济南;

发布时间: 2025-10-30 总浏览量: 60

摘要

随着全球金融市场的复杂程度与相互关联性显著增强,传统预测方法存在宏观数据滞后、市场情绪难量化等局限。本文以央行文本信息为研究对象,选取《中国货币政策执行报告》为代表性文本,构建面向央行文本的领域词典,系统检验其对金融市场的预测效果。在方法构建上,本文克服了通用词典在金融文本处理中的适应性不足,通过集成Word2Vec词向量技术与人工筛选机制,构建了专门针对央行政策语境的领域词典,有效解决了通用词典在金融政策文本中的语义偏差问题,并引入否定词与程度副词调整规则,构建了适用于央行语料的情绪指数测度框架。实证结果显示:央行文本信息对股票市场收益率表现出显著预测能力,尤其对创业板指的预测效果最为突出,表明成长型资产对政策情绪信号具有更高敏感性;在外汇市场方面,文本情绪信息对在岸人民币汇率的贬值压力抑制效应显著,而离岸市场因境外投资者的语言壁垒呈现预测失效。本文既为央行文本信息量化提供了方法论创新,还为政策制定者优化预期管理、投资者识别市场信号提供了实证依据。

关键词: 央行文本信息;领域词典;金融市场预测;Word2Vec

Abstract

As global financial markets grow increasingly complex and interconnected, traditional forecasting methods face limitations such as lagging macroeconomic data and difficulties in quantifying market sentiment. This study focuses on textual information from central banks, selecting the China Monetary Policy Execution Report as a representative corpus, and constructs a domain-specific dictionary for central bank texts to systematically examine its predictive power for financial markets. Methodologically, this research addresses the inadequacy of general-purpose dictionaries in processing financial texts by integrating Word2Vec word embedding technology with manual screening mechanism. Based on semantic relevance, domain-specific vocabulary is expanded, and rules for negation words and degree adverbs are introduced to develop a sentiment indexing framework tailored to central bank language. Empirical results show that central bank textual information significantly predicts stock market returns, with the most pronounced effect observed for the ChiNext Index, indicating that growth-oriented assets are more sensitive to policy sentiment signals. In foreign exchange markets, textual sentiment significantly suppresses depreciation pressures in onshore CNY rates, whereas predictive power fails in offshore markets due to language barriers among international investors. This study not only offers methodological innovations in quantifying central bank textual information but also provides empirical support for policymakers to improve expectation management and for investors to identify market signals.

Key words: Central bank textual information; Domain-specific dictionary; Financial market forecasting; Word2Vec

参考文献 References

[1] Fama F E .Efficient Capital Markets: II[J].The Journal of Finance,1991,46(5):1575-1617.

[2] Baker M ,Wurgler J .Investor Sentiment in the Stock Market[J].The Journal of Economic Perspectives,2007, 21(2):129-151.

[3] De Long J B ,Shleifer A ,Summers L H , et al.Noise Trader Risk in Financial Markets[J].Journal of Political Economy, 1990,98(4):703-738.

[4] Tetlock C P .Giving Content to Investor Sentiment: The Role of Media in the Stock Market[J].The Journal of Finance,2007,62(3):1139-1168.

[5] Loughran T ,McDonald B .When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks[J].The Journal of Finance,2011,66(1):35-65.

[6] Bollen J ,Mao H ,Zeng X .Twitter mood predicts the stock market[J].Journal of Computational Science,2011,2(1):1-8.

[7] 姜富伟,胡逸驰,黄楠.央行货币政策报告文本信息、宏观经济与股票市场[J].金融研究,2021,(06):95-113.

[8] 姚加权,冯绪,王赞钧,等.语调、情绪及市场影响:基于金融情绪词典[J].管理科学学报,2021,24(05):26-46.

[9] Barberis N ,Shleifer A ,Vishny R .A Model of Investor Sentiment[J].Journal of Financial Economics,1998, 49(3): 307-343.

[10] Kohn D L ,Sack B .Central Bank Talk: Does It Matter and Why?[J].Finance and Economics Discussion Series,2003, 7(55):220-236.

[11] 姜富伟,孟令超,唐国豪.媒体文本情绪与股票回报预测[J].经济学(季刊),2021,21(04):1323-1344.

[12] Bjerkander L ,Glas A .Talking in a language that everyone can understand? Clarity of speeches by the ECB Executive Board[J].Journal of International Money and Finance,2024, 149: 103200-103200.

[13] Blinder S A ,Ehrmann M ,Fratzscher M , et al.Central Bank Communication and Monetary Policy: A Survey of Theory and Evidence[J].Journal of Economic Literature,2008, 46(4): 910-945.

[14] Hirshleifer D ,Teoh S H .Herd Behaviour and Cascading in Capital Markets: a Review and Synthesis[J].European Financial Management,2003,9(1):25-66.

[15] Morris S ,Shin S H .Social Value of Public Information[J].The American Economic Review,2002, 92(5): 1521-1534.

[16] 李艳丽,郭蓉,孙钰雯.央行口头沟通与人民币汇率预期——基于事件分析法的研究[J].金融论坛,2020, 25(09): 19-28.

[17] Baker M ,Wurgler J .Investor Sentiment and the Cross-Section of Stock Returns[J].The Journal of Finance,2006, 61(4):1645-1680.

[18] 周阳,綦岚鑫.央行文本情绪具有金融市场效应吗——基于《中国货币政策执行报告》的研究[J].财经科学,2024, (02):17-30.

[19] 郑诚,潮旭,章金平.基于规则的情感本体和词向量的中文情感分类[J].微电子学与计算机,2019,36(06):50-54.

[20] Jiang F ,Lee J ,Martin X , et al.Manager sentiment and stock returns[J].Journal of Financial Economics,2019,132(1): 126-149.

[21] 吴国培,潘再见.中央银行沟通对金融资产价格的影响——基于中国的实证研究[J].金融研究,2014,(05):34-47.

[22] Huang D ,Jiang F ,Tu J , et al.Investor Sentiment Aligned: A Powerful Predictor of Stock Returns[J].Reviews of Financial Studies,2015,28:791-837.

[23] 孙欣欣,卢新生.美联储货币政策中性化背景下人民币外汇市场间均衡关系调整和溢出效应研究[J].世界经济研究,2017,(01):41-59+136.

[24] Welch I ,Goyal A .A Comprehensive Look at the Empirical Performance of Equity Premium Prediction[J].The Review of Financial Studies,2008,21(4):1455-1508.

[25] Campbell J Y ,Thompson S B .Predicting Excess Stock Returns out of Sample: Can Anything Beat the Historical Average?[J].Reviews of Financial Studies,2008,21(4): 1509-1531.

[26] Amihud Y .Illiquidity and stock returns: cross-section and time-series effects[J].Journal of Financial Markets,2002, 5(1): 31-56.

引用本文

段从强, 央行文本信息及其对金融市场的预测效果研究[J]. 国际金融进展, 2025; 7: (3) : 28-36.